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e consider the two-level uncapacitated facility location problem with single-assignment constraints

(TUFLP-S), a problem that arises in industrial applications in freight transportation and telecommuni-
cations. We present a new Lagrangian relaxation approach for the TUFLP-S, based on solving a single-level
uncapacitated facility location problem (UFLP) as the Lagrangian subproblem. We also develop a Lagrangian
heuristic that includes a mixed-integer programming-based large neighborhood search heuristic exploring
neighborhoods by solving a series of small UFLPs. The dual and primal bounds thus obtained are used within
an enumerative algorithm that implements specialized branching rules. Our computational experiments on
instances derived from an industrial application in freight transportation as well as on large, hard, artificial
instances confirm the efficiency of our specialized branch-and-bound algorithm.
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1. Introduction

The two-level uncapacitated facility location prob-
lem (TUFLP) (Kaufman, Eede, and Hansen 1977) is
an extension of the uncapacitated facility location
problem (UFLP) (Krarup and Pruzan 1983). The UFLP
consists in locating facilities from a finite set of poten-
tial sites and in assigning each customer to one of
the selected facility locations to minimize the total
costs, which include fixed costs for opening facility
locations and assignment costs between customers
and facility locations. In the TUFLP, the finite set of
potential facility locations is replaced by two levels
of such locations, depots at the upper level and satel-
lites at the lower one. The only arcs are between
depots and satellites and between satellites and cus-
tomers. The problem is to decide which depots and
satellites to open, and to which depot-satellite pair
each customer should be assigned, to satisfy customer
demands at minimum cost (Aardal et al. 1996). This
problem arises in the design and operation of hierar-
chical networks that take advantage of economies of
scale, most notably in freight transportation (Gendron

and Semet 2009), but also in telecommunications
(Chardaire, Lutton, and Sutter 1999).
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We are concerned with a variant of the TUFLP that
forces a single-assignment property on satellites: each
satellite can be linked to at most one depot, and fixed
costs are imposed on the use of arcs between depots
and satellites. The single-assignment constraints en-
sure that any solution is a forest of trees rooted at
depots. This variant of the TUFLP was introduced in
Chardaire, Lutton, and Sutter (1999), motivated by an
application in the design of telecommunications net-
works. Our study of the TUFLP with single assignment
(TUFLP-S) is motivated by an industrial application
in freight transportation, related to the operation of
multicommodity distribution systems over a short-
term planning horizon (Gendron and Semet 2009). In
that industrial problem, depot and satellite locations
typically correspond to freight terminals and park-
ing spaces, respectively, for which the locations may
vary every day in response to demand fluctuations.
The TUFLP-S arises as a subproblem in decomposi-
tion and heuristic methods for solving the optimiza-
tion problem derived from this application.

As illustrated by recent surveys (Klose and Drexl
2005; Melo et al. 2009; Sahin and Siiral 2007; Farahani
et al. 2014), there is an abundant literature on
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multilevel facility location problems, which general-
ize the TUFLP-S. Mathematical programming mod-
els for these problems are usually divided into two
classes, arc-based (Marin 2006; Pirkul and Jayaraman
1996, 1998) and path-based (Barros and Labbé 1994;
Gao and Robinson 1992; Kaufman, Eede, and Hansen
1977; Ro and Tcha 1984), which have been com-
pared theoretically and experimentally (Bloemhof-
Ruwaard, Salomon, and Van Wassenhove 1994, 1996;
Chardaire, Lutton, and Sutter 1999; Marin and
Pelegrin 1999). Exact solution methods have been
developed, based on Lagrangian relaxation (Barros
1995; Marin and Pelegrin 1999; Pirkul and Jayaraman
1996, 1998) and on strengthening the models with
valid inequalities and facets (Aardal et al. 1996;
Chardaire, Lutton, and Sutter 1999; Landete and
Marin 2009). Heuristic methods have been proposed,
based on Lagrangian or linear programming (LP)
relaxations (Barros, Dekker, and Scholten 1998; Pirkul
and Jayaraman 1996, 1998), on greedy strategies or
simple neighborhood search methods (Barros and
Labbé 1994; Mitropoulos, Giannikos, and Mitropoulos
2009; Narula and Ogbu 1979), on more sophisti-
cated metaheuristics (Chardaire, Lutton, and Sutter
1999; Gendron, Khuong, and Semet 2015; Maric 2010;
Ignacio, Filho, and Galvdo 2008), and on approx-
imation algorithms (Bumb 2001; Gabor and van
Ommeren 2010; Zhang 2006).

Our contribution is threefold. First, we compare
a mixed-integer programming (MIP) formulation for
the TUFLP-S with previously described formulations
for variants of the TUFLP. Then, from that formula-
tion, we derive a Lagrangian relaxation scheme that
provides stronger lower bounds than the LP relax-
ation, as well as an MIP-based large neighborhood
search (LNS) heuristic; these bounding algorithms
are combined in a Lagrangian heuristic to compute
tight lower and upper bounds. Finally, we embed
the Lagrangian heuristic within a branch-and-bound
algorithm that uses specialized branching schemes.
On industrial instances, the Lagrangian heuristic gen-
erates tighter bounds at the root node than a state-of-
the-art MIP solver, while on large artificial instances,
the specialized branch-and-bound method reduces
computational times by a factor of three, when com-
pared to a state-of-the-art MIP solver.

Section 2 introduces MIP formulations for vari-
ants of the TUFLP and compares them with our
formulation for the TUFLP-S. A description of the
Lagrangian heuristic follows in Section 3: first, the
Lagrangian relaxation scheme; then a heuristic to solve
the Lagrangian dual; and finally, the MIP-based LNS
heuristic. Section 4 outlines the branch-and-bound
algorithm and its branching schemes. Section 5 reports
computational results on large industrial instances
and on hard artificial instances.
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2. TUFLP Formulations
A general model for two-level uncapacitated facility
location problems is introduced in Barros and Labbé
(1994). In addition to transportation costs for each
path from depot to satellite to customer and fixed
costs on the use of depots and satellites, the model
includes fixed costs for arcs from depots to satellites.
The model can be stated as follows.

Let I be the set of potential depot locations, let | be
the set of potential satellite locations, let K be the set
of customer locations, and let
1, if depoti is open, .
yi= [0, otherwise, iel,

1, if satellite j is open,

o E r
! [0, otherwise, I

operating together,

1, if depot i and satellite j are
(i,j)elIx],

{ 0, otherwise,

[1, if customer k is served
Xk = through pair (i, j),
0, otherwise,
(i,j,k)eIx ] xK.

The general TUFLP, called TUFLP-G, can then be
formulated as

o(TUFLP-G) = minlz fui+Y g7+ X hyty

iel i€l (i, jiel=]

+ Z Ca’jk X ifk l

(i, 7, k)elx]xK
subject to
(i, f)elx]
xg <t;, Y(i,j,k)elx]xK, ()
Yoxw <y, V(i kelxK, (3)
i€l
> xx <z, VY(,ke]xK, (4)

iel
0=<x; <1, V(i,j,k)elx]xK,
y;€{0,1}, Viel,
zje{O,l}, Vie],
tf’}'e{ol 1}; V(ifj)EI X};
where f;, g;, and h; are the nonnegative fixed costs

for, respectively, each depot i € I, each satellite j €],
and each pair of depot-satellite (i,j) € I x ], and
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where c;; is the nonnegative total transportation cost
for each path from a depot i to a satellite j to a cus-
tomer k (Barros and Labbé 1994).

Constraints (1) guarantee that the demand for each
customer is satisfied exactly, and constraints (2)—(4)
ensure that fixed costs are incurred for the use of
depot-satellite pairs, depots, and satellites. Note that
the integrality of the x;; variables can be relaxed
without affecting the optimal objective value. Thus,
TUFLP-G implicitly ensures that the flow to each cus-
tomer is never split.

Alternative versions of the general model also
include the following constraints:

xp <Y, V(i,j,k)elx]xK, (5)
xx <z, V(,j,k)elx]xK, (6)
ty<y, V(,j)elx], 7)
ti<z;, Y@, j)elx]. )

However, constraints (5) are dominated by (3), and
(6) by (4). Constraints (7) and (8) are redundant given
nonnegative fixed costs h; and constraints (2)-(4).
Indeed, h; > 0 implies the existence of an optimal
solution sﬁch that t; = max;{x;3} = x;. for each
(i,j) €I x J; thus, y; = 3 i) Xjjpe = X = £, and con-
straints (7) are implied by (2) and (3). Likewise, con-
straints (8) are implied by (2) and (4).

Note that an optimal solution to TUFLP-G does
not necessarily satisfy the single-assignment property.
Transportation costs that vary significantly depend-
ing on the depot, for a given customer, may lead to
optimal solutions in which the same satellite is linked
to multiple depots.

We consider a variant in which we enforce this
single-assignment property, expressed with the addi-
tional constraints

2.ti<1, VjeJ. ©)
iel
The redundant constraints (7) are also added, as
they are useful in solving the model. Indeed, the
binary nature of the #; variables along with con-
straints (7) imply y; € {0,1} for each i € I. When
adding the redundant constraints (7), it is thus possi-
ble to relax the integrality of the y; variables and still
maintain feasibility. We have observed that state-of-
the-art MIP solvers perform better when these vari-
ables are allowed to take fractional values, rather than
restricted to binary values. In addition, we also use
constraints (7) to strengthen the Lagrangian relaxation
described in Section 3.
Constraints (9) allow us to project out the z; vari-
ables by using the equations

z; :th-}-, Viel.
il
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The fixed cost g; on each satellite j can then be folded
in the fixed cost I;; = g; + h;; for every arc (i,))elIx].
Constraints (4) can be eliminated, since they are sim-
ple aggregations of constraints (2).

The resulting formulation is TUFLP-S, where the y;
variables are allowed to take fractional values, as
explained above

o(TUFLP-S) = IZﬁynL 2 Lty

iel (i, flel=]

+ Z Cr’}'k X ijk l

(i, K)el=]=K
subject to

Y xp=1, VkeKk,

(i, jlel=]

2 ty=1, Vje],

]E:k‘:fw V(i,j,k)elIx]xK,
Yxg <y, V(,kelxK,
ig}'JE vy, VY(,j)elx],

0<x; <1, V(,jkelx]xK,
0<y; <1, Viel,

t;€{0,1}, V(i jelx].

Most studies on two-level uncapacitated location
problems without single assignment are concerned
with a simplification of the general model TUFLP-G:
fixed costs on links between depots and satellites, h,-}.-,
are always zero. Two seminal papers (Kaufman, Eede,
and Hansen 1977; Ro and Tcha 1984) marked early
research on this classical TUFLP: they introduced MIP
formulations and specialized lower bounding meth-
ods and exploited them in branch-and-bound algo-
rithms. More recent approaches (Aardal et al. 1996;
Barros 1995; Landete and Marin 2009) are based on
the MIP formulation obtained by eliminating the #;
variables (since h; =0 for each (i, j) €I x ]) and con-
straints (2) from TUFLP-G; this does not affect LP
relaxation bounds, as values for f variables can be
assigned easily, without affecting the total cost. We
call the resulting formulation TUFLP-C

(TUFLP-C I nyf'f'zg}z} + z Cr}kxf'}'k]

iel (i, K)el=]=xK
subject to

Y xu=1, VkeKk,
(i, elx]
2 xx <V, V(i kelxK,
jel
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D X <z, Y(j,ke]xK,

iel

Ofxfjksl, V(i,j,k)EIX}XK,
y;€{0,1}, Viel,

zje{O,l}, Vie].

It is sometimes further assumed that the transporta-
tion costs Cijkr for all (i,j, k) € I x | x K, are sums
of per-arc costs dic; + ¢, thus allowing the use
of a more compact, but weaker, arc-based (or two-
index) formulation. Such a structure for transporta-
tion costs, in conjunction with h;; costs equal to zero,
makes it possible to impose or to relax the single-
assignment constraints without affecting the optimal
value (Chardaire, Lutton, and Sutter 1999). Sets of
open depots and satellites obtained from an optimal
solution can be converted into a complete solution of
TUFLP-S with a greedy procedure (that breaks ties
consistently). Thus, even if only for this large class of
instances, TUFLP-C and TUFLP-S are equivalent.

Constraints (3) and (4) define facets of the feasible
polytope for TUFLP-C (Barros 1995). TUFLP-S pre-
serves nearly all the constraints of TUFLP-C, includ-
ing (3); the only missing constraints are (4), which
are replaced with the stronger constraints (2). Thus,
when all three formulations are applicable, TUFLP-S
leads to a stronger LP relaxation than both TUFLP-G
and TUFLP-C. Moreover, the difference is obtained by
strictly improving on constraints that define facets of
the TUFLP-C polytope. This can only be achieved by
expanding the decision variables to include f; vari-
ables and by explicitly considering single-assignment
constraints.

Solution methods for TUFLP-G, TUFLP-S, and
TUFLP-C can be cast into three classes. Some ap-
proaches strengthen the formulation with valid in-
equalities, many of them facet defining (Aardal et al.
1996; Landete and Marin 2009), leading to large-
scale models. Other approaches attempt to decrease
solution times by computing approximate LP bound
values, via dual ascent or Lagrangian relaxations
combined with subgradient methods (Barros 1995;
Barros and Labbé 1994; Gao and Robinson 1992).
Finally, both metaheuristics (Barros and Labbé 1994)
and approximation algorithms (Bumb 2001; Zhang
2006) have been developed to quickly obtain primal
solutions.

The TUFLP with single assignment has been stud-
ied in Chardaire, Lutton, and Sutter (1999), where the
TUFLP-S formulation presented here is introduced.
Lower bounds are obtained with a Lagrangian relax-
ation scheme in which the dual is solved with a sub-
gradient method and upper bounds are computed
with a simulated annealing method.

We have shown above that the TUFLP-S formu-
lation leads to stronger LP relaxation bounds than
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the TUFLP-C formulation, when they can be com-
pared, at the expense of increased formulation size:
each constraint (4) is replaced with multiple con-
straints (2), and the number of binary variables grows
from |I|+|]| to |I x]|. Rather than attempting to
quickly obtain approximate LP relaxation bounds
for this large-scale formulation, we will compute
even stronger bounds than the LP relaxation with a
Lagrangian relaxation scheme, extract upper bounds
with an MIP-based LNS heuristic, and further accel-
erate a branch-and-bound algorithm with specialized
branching schemes.

3. Lagrangian Heuristic

The TUFLP-S is similar to the (single-level) UFLP, a
problem for which there exists a large body of lit-
erature and efficient solution methods (Cornuéjols,
Nembhauser, and Wolsey 1991; Krarup and Pruzan
1983). We exploit this strong foundation with a La-
grangian relaxation scheme in which the subproblems
are UFLPs and with an MIP-based LNS heuristic that
explores neighborhoods by solving UFLPs. These two
components are further combined in a Lagrangian
heuristic: the Lagrangian relaxation provides lower
bounds and initial solutions, while the MIP-based
LNS heuristic repairs and improves these solutions.

3.1. Lagrangian Relaxation

In Barros and Labbé (1994), it is proposed to obtain
Lagrangian bounds for TUFLP-G (or the related
TUFLP-C) by relaxing constraints (1), (3), and (4). The
alternative chosen in Chardaire, Lutton, and Sutter
(1999) is to bound TUFLP-S by relaxing (1), (3),
and (9). In both cases, the Lagrangian bound is theo-
retically equal to the LP bound.

We focus on the Lagrangian relaxation obtained
by dualizing only constraints (2). As we now show,
the resulting Lagrangian subproblem can be con-
verted into a significantly smaller, efficiently solved,
UFLP. Moreover, this subproblem does not exhibit the
integrality property, and the relaxation thus yields
stronger bounds than the LP relaxation of TUFLP-S,
both in theory and in practice.

When relaxing constraints (2), the Lagrangian sub-
problem S(A) can be formulated as follows, where
A >0 is the vector of Lagrange multipliers:

v(S(A)) = mIZﬁ'yi + 2 (ff;' -2 "r‘;‘k)fif

iel (i, flel=] keK

+ X

(Cf'}'k + )‘f'jk ) xa’jk l
(i, f, k)elx]xK

subject to
(i, f)elx]

Zf!'}'sll V]’EJTI

iel
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2 xx <Yy, V(i k) elIxK,

jel

ti<y, Y(j)elx],
sti}'kslf V(iljfk)EIerXK;
0<t, <1, V(,j)elx],

i —

y;€{0,1}, Viel.

In formulation TUFLP-S, all of the variables are
conceptually binary, but the x and y variables are left
free to take fractional values. In the Lagrangian sub-
problem, all of the variables are conceptually binary,
but the x and t variables are free to take fractional val-
ues, simplifying the formulation. This modification is
valid, since the integrality constraints on the y; vari-
ables are redundant in TUFLP-S and can therefore
be added to the Lagrangian subproblem; then, the
integrality of the #; variables can be relaxed without
changing the optimal value of the Lagrangian sub-
problem. It can be simplified further, as we now show.

A simple dominance argument confirms that, for
each pair of depot i € I and customer k € K, all but
one x;; variable can be eliminated. If, in a given opti-
mal solution, there is a j € ] such that x;; =1, that
variable can always be substituted with 'x,-}-,k, where
j' =argmin,_ {cyx + A}, a variable corresponding to
a least-cost (penalized) path from i to k.

By defining

CA)y = nilEj}n{c,-}.-k +Al, V(i k) elxK,
the Lagrangian subproblem S(A) can then be solved
as a more compact MIP, 5,(A), in which the number of
variables scales quadratically (rather than cubically)
with the instance size

v(5.(1) = mm[Z fyi+ 2 (Ir}' -2 )"z'jk) i

il (i, flel=] keK
+ 2 E(/\')ikwik]
(i, k)el=K

subject to

Zwikzl, VkEK,

iel

Zf,-}.- <1, Vje]J,

iel

wy <y, Y(i,k)elxK,
ti<y., V(i,j)elx],
O<w; <1, V(i,k)elIxK,
0<t;<1, V(@,j)elx],
y;€{0,1}, Viel.

This alternative formulation is easily seen to be
equivalent to the previous one by using the dominance
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argument above. In particular, any solution to S.(A)
can be converted into a solution to S(A), by keeping
track of which c;; corresponds to each ¢(A), for each
pair of depot i € I and customer k € K; subgradients
for the Lagrangian subproblem can thus be extracted
from optimal solutions to the compact formulation.
The compact Lagrangian subproblem is equivalent
to the UFLP (with links only between facilities and
customers). Any UFLP instance can be cast as an
instance of the compact subproblem, by simply map-
ping facilities to depots and customers to customers,
and letting the set of links between depots and satel-
lites be empty. The compact Lagrangian subproblem
itself is also easily reduced to the UFLP, by map-
ping depots to facilities and satellites and customers
to customers. The assignment inequalities, ) ;. £; <1,
Vj €], can be turned into strict equalities by allowing
every satellite to be linked to an artificial depot with
zero costs. The Lagrangian subproblem, like the UFLP,
therefore does not have the integrality property.

3.2. Solving the Lagrangian Dual
The Lagrangian dual can be formulated as
maxv(S,(A))-

It is well known that the objective function of the
Lagrangian dual (i.e., the optimal values v(S.(A)) of
the Lagrangian subproblems for all A > 0) is concave
but nondifferentiable (Frangioni 2005). Hence, the
Lagrangian dual is generally difficult to solve, even
more so, as is the case here, when the Lagrangian sub-
problem is itself a difficult problem.

We solve the Lagrangian dual with a two-step
heuristic that is well suited to being embedded into
branch-and-bound methods, as discussed in Section 4.
The first step computes a starting point for the
Lagrangian dual, by solving the LP of the origi-
nal (nondualized) model. Lagrange multipliers are
read as the dual values corresponding to the relaxed
constraints. In the second step, the Lagrangian sub-
problem (with integer variables) is evaluated once,
with multipliers extracted from the LP relaxation.
The Lagrangian dual is thus optimized with a fast
heuristic.

In the computational experiments reported in Sec-
tion 5, we compare this heuristic to a state-of-the-
art implementation of the bundle method (Frangioni
1996), a nondifferentiable optimization method with
stronger convergence properties than simpler ap-
proaches like subgradient methods (Frangioni 2005).
More precisely, the bundle method is initialized as in
the first step of the heuristic described above, to mini-
mize the computational effort dedicated to improving
Lagrange multipliers that are far from the optimum.
Then, the lower bound is improved with a few iter-
ations of the bundle method. Note that since the
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Lagrangian subproblem does not have the integral-
ity property, this approach yields lower bounds that
are at least as strong as the LP relaxation bounds of
TUFLP-S.

Our computational experiments show that this
implementation of the bundle method, with default
settings, leads to tighter lower bounds than the
proposed heuristic. Unfortunately, the method must
perform several iterations before its model of the
Lagrangian dual is accurate enough to yield sizeable
improvements in bound quality. That is why we pro-
pose to solve the Lagrangian subproblem only once,
with Lagrange multipliers derived from the LP relax-
ation. Even in this case, the fact that the Lagrangian
subproblem S (A) is solved as an integer subproblem
ensures that the resulting bound will always be at
least as strong as the LP bound. Regardless of the
bound value, integer solutions to 5.(A) are also useful
to guide the primal heuristic, as we see in Section 3.3.

3.3. Primal Heuristic

The primal heuristic is an MIP-based LNS approach
that alternates between two large neighborhoods until
no progress is observed between two consecutive
iterations. Each neighborhood is explored exactly,
through the solution of UFLPs.

The first neighborhood is defined by the set of solu-
tions that preserve a given set of open depots: satel-
lites may be opened, closed, and reconnected to open
depots, and each customer may be assigned to any
open satellite. Let I* C I be a set of open depots;
the first neighborhood, corresponding to solutions in
which the depots in I* are open and those in I\I*
are closed, is explored by solving the following MIP
formulation:

minlz ft Y L+ X cf.}.kx,}.k]

iel* (i, el x] (i, j, Kl xJxK
subject to
2. xx=1, VkeKk, (10)
(i, flel*=]
Ef,-jsl, Vie], (11)
xp <ty, V(i,j,k)el"x]xK, (12)

0O<xy <1, Y@, jkel'x]xK,
t;€{0,1), V(i j)el*x].

This formulation corresponds to a UFLP in which
the set of open facilities is subject to side conditions,
the generalized upper bound (GUB) constraints (11).
These side constraints can be expressed in a UFLP
with the addition, for each j € J, of an artificial cus-
tomer k;. The cost for linking k; to any #;,i € I*, is
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very negative (—M), and zero for all other facilities,
and the location costs [;; are all increased by M. Thus,
it is only profitable to open a location (i, j) if it can be
linked to k;; in that case, the M values sum to zero,
and the objective function is not affected. Moreover,
constraints (10) mean that each k; is linked to exactly
one £, and thus that at most one £; is set to one, for
any je].

The second neighborhood is defined by the set of
solutions that preserve a given assignment of cus-
tomers to satellites: depots can be closed or open,
and satellites can be reconnected to different open
depots. For each satellite j, let K*(j) be the set of
customers linked to that satellite in a given solution.
The second neighborhood for that solution may be
directly explored as a UFLP, in which facilities corre-
spond to depots and customers to satellites (for which
K*(j) # @). Let J* C ] be the set of satellites for which
K*(j) # @, and let

dy=l;+ X cy, V(,j)elx]
keK(j)
We then have the following MIP model for the second
neighborhood:

minl Y+ ¥ d,-}-tf-jl

iel (i, flelx]*

subject to
th}'zlr V}.EI*;
i€l

<y, V@, j)elx],
05%‘51; V(i,j)elx}*,
y;€{0,1}, Viel

The primal heuristic is completed with a postop-
timization procedure that exploits the information
from the solutions of the second neighborhood. More
specifically, a restricted TUFLP-S model is solved by
fixing to 0 the depot location variables that assume
value 0 in all optimal solutions of the second neigh-
borhood MIP models.

The primal heuristic must be initialized with a feasi-
ble solution. Rather than constructing one, it is possi-
ble to repair solutions from the integer Lagrangian
subproblem S (A). The first neighborhood only re-
quires a set of open depots; such a set can be extracted
from any solution to S.(A).

Tight lower and upper bounds are thus obtained in
three steps:

1. Solve the LP relaxation of TUFLP-S.

2. Solve S,(A), with Lagrange multipliers A ex-
tracted from the previous step.

3. For each integer solution found when solving
5.(A), perform the primal heuristic, starting with the
set of open depots in that solution.
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4. A Specialized Branch-and-Bound
Method

The bounding procedure described in the previous
section depends, in part, on the full solution of the
LP relaxation. It could be directly embedded within a
standard branch-and-bound method, to improve only
bound values. We found it more efficient to aug-
ment an LP-based branch and bound with the spe-
cialized lower and upper bounds, and with branching
rules guided by complementary slackness violations
in solutions to the Lagrangian subproblem S.(A).

Note that the evaluation of each node is computa-
tionally heavy, and we attempt to minimize the size
of the search tree by developing specialized branch-
ing schemes and by adapting reliability branching
(Achterberg, Koch, and Martin 2005) to our con-
text. Section 4.1 describes the specialized branching
schemes. Our adaptation of reliability branching is
presented in Section 4.2. We provide an overview of
the branch-and-bound algorithm in Section 4.3.

4.1. Branching Schemes

We implemented two branching schemes that exploit
the GUB constraints (9): the GUB branching scheme
and the polytomic branching scheme.

The GUB scheme branches on sums of variables
Y icr b, for some satellite j € ], forcing them to be
equal to 0 or 1, i.e., converting GUB constraints (9) to
equalities. The LP relaxation is exploited to consider
only those j € | for which the sum is fractional, which
are the candidate branches.

The polytomic scheme branches on multiple vari-
ables at once. It can be used alone or in conjunc-
tion with the GUB branching scheme; it is then also
applicable to GUB constraints that were converted
to strict equalities by earlier branching steps. Rather
than turning GUB constraints into either of two equal-
ities, a child is spawned for each variable in the sum,
fixing that variable to one (and the others to zero),
and one more in which the sum is set to zero, when
the constraint is an inequality. Again, the LP relax-
ation is exploited to consider as candidate branches
only those j € | such that at least one t;;, for some i €,
is fractional. '

The polytomic branching scheme, used alone, en-
sures the convergence of the branch-and-bound
method. However, on many instances, the number of
nodes evaluated and the solution time are significantly
reduced by initially branching with the GUB scheme
and resorting to the polytomic scheme only when
necessary, i.e., the node is not fathomed and all of the
i1 t;; are integral.

4.2. Adaptation of Reliability Branching
Reliability branching generalizes pseudocost branch-
ing (Benichou et al. 1971) and combines it with strong
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branching (Applegate et al. 1995). As in pseudocost
branching, history-based pseudocosts (i.e., average
bound improvements) are used to select the candidate
branch. In our adaptation, the particular pseudocosts
stored in memory depend on the branching scheme.
In the GUB scheme, average bound improvements are
computed for each satellite j € ] and for each right-
hand side of the GUB constraints (9) (i.e., whether the
equality is fixed to 0 or to 1). In the polytomic scheme,
we separately track average bound improvements for
each variable when it is set to one and when all vari-
ables are set to zero (equivalently, when the GUB con-
straint for satellite j becomes an equality with 0 on
the right-hand side).

In reliability branching, a candidate branch is de-
clared reliable if its pseudocosts are based on sulffi-
ciently many evaluations (more than a reliability
parameter n € N). In our adaptation, we proceed as
follows. For each reliable candidate branch, a score
is computed by taking the geometric average of the
pseudocosts of all of its potential children (using a
small minimum value € > 0). The candidate branch
that achieves the maximum score is selected as the
current branching choice. If all candidate branches are
reliable, the procedure terminates and the current
branching choice is the final one. In such a case, relia-
bility branching operates in the same way as pseudo-
cost branching.

If some candidate branches are unreliable, these
candidate branches are first sorted based on a rank-
ing criterion, to be discussed below. According to this
ranking, unreliable candidate branches are iteratively
examined to determine their scores. For any candi-
date branch, each of its potential children is partially
evaluated with a small number y € N of dual simplex
iterations, as in strong branching. The score for each
candidate branch is computed by taking the geomet-
ric average of the resulting estimated bound increases
for all of its potential children (using a small min-
imum value € > 0). If there is no reliable candidate
branch, the current branching choice is the first unreli-
able candidate branch. Otherwise, the current branch-
ing choice was already determined when comparing
the reliable candidate branches. To provide a fair basis
of comparison with the unreliable candidate branches,
this current branching choice is partially evaluated,
like the unreliable candidate branches. Subsequently,
any candidate branch with a higher score than that
of the current branching choice becomes the new
current branching choice. The next unreliable candi-
date branch is examined, and this iterative process is
repeated until the current branching choice has not
changed for A € N iterations (the look-ahead factor).
We implemented this method, with n =8, A =4 (as
suggested in Achterberg, Koch, and Martin 2005), and
v =200 (rather than adaptively).
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In standard reliability branching, the ranking cri-
terion used to sort the unreliable candidate branches
is the pseudocost, which is, however, known to be
unreliable. Rather than attempting to compute initial
“reliable” pseudocosts (for instance, by using strong
branching evaluations), we sort the unreliable candi-
date branches with respect to complementary slack-
ness violations in the Lagrangian subproblem. For
each satellite j, the quantity

) )‘:'jk|x:'jk — gl
(i, k)elxK
is computed, and satellites corresponding to larger
values are considered first. In preliminary experi-
ments, this heuristic proved to reduce the number of
nodes compared to summing LP-based reduced costs,
even on instances for which the integer Lagrangian
subproblem does not improve the LP bound value.

4.3. Overview of the Algorithm

The nodes are explored in a best-first order, with
respect to the Lagrangian lower bounds. For the cur-
rent node, a branching choice is determined by relia-
bility branching. The children of the current node are
fully evaluated by running the simplex until conver-
gence and by evaluating the Lagrangian integer sub-
problem once. The children are then adjoined to the
best-first search queue.

As in LP-based branch-and-bound approaches,
some binary variables are fixed according to their
reduced costs. The primal heuristic is executed at
each node that is not fathomed. As described in Sec-
tion 3.3, the solutions to the Lagrangian subproblems
are used to initialize the primal heuristic. To make
sure a diverse range of initial solutions are provided
to the primal heuristic, any feasible solution corre-
sponding to a neighborhood that has already been
explored is rejected when the MIP corresponding to
each Lagrangian subproblem S,(A) is solved.

5. Computational Experiments

We compare the strength of the formulations and
bounding methods by reporting gaps at the root node.
We also compare the performance of our branch-
and-bound method with that of the state-of-the-art
MIP solver CPLEX by reporting the run time and
number of search nodes until optimality is proven
(within 0.1%). The tests were performed on four sets
of instances.

All of the computations were performed in single-
threaded mode on a 2.5 GHz Intel E5-2609 v2 pro-
cessor with 126 GB RAM (hyperthreading and Turbo
Boost were disabled). The solvers were compiled with
g++4.9.2 with optimizations, and CPLEX 12.6.1 was
used to solve LP and MIP models. The only excep-
tions were values copied from Landete and Marin
(2009), which were computed on an older platform:
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2.6 GHz AMD Opteron central processing unit (CPU)
with 4 GB RAM and CPLEX 9.1. Note that we always
use CPLEX 12.6.1 in default settings mode. Although
some parameter settings might perform better on par-
ticular classes of instances, the default settings proved
robust overall.

Our specialized branch-and-bound method uses
CPLEX 12.6.1 to solve the MIP models in the La-
grangian heuristic, i.e., the integer Lagrangian sub-
problem and the primal heuristic subproblems. As
shown in Section 3.1, all of these subproblems can
be formulated as UFLPs, and it might be fruitful to
exploit robust specialized UFLP solvers (Barahona and
Chudak 2005; Beltran-Royo, Vial, and Alonso-Ayuso
2012; Hansen et al. 2007; Korkel 1989; Letchford and
Miller 2012; Letchford and Miller 2014; Posta, Ferland,
and Michelon 2014) when tackling huge instances of
the TUFLP-S.

To our knowledge, it is not possible to embed
all components of our specialized branch-and-bound
method within the CPLEX environment. Using call-
back functionalities of CPLEX, the primal heuristic
could be embedded within CPLEX branch-and-bound.
The Lagrangian subproblem might be appended in
a similar way, but then, it is not clear how to com-
bine it with the cut generation features of CPLEX.
Finally, CPLEX lacks support for polytomic branching,
and it is currently impractical to implement anything
but binary or simple multiway branching schemes (by
reducing the latter to a series of binary branches). That
is why our branch-and-bound implementation uses
CPLEX as a subroutine, rather than being embedded
within the CPLEX branch-and-bound environment.

The instances in the first set were generated as sub-
problems in a Lagrangian relaxation used to solve
the industrial location problem described in Gendron
and Semet (2009). These instances cannot be solved
as TUFLP-C, and are relatively large, but exhibit low
gaps at the root node; they highlight the effectiveness
of the Lagrangian heuristic to compute tight upper
and lower bounds.

The second set contains gap instances: artificial,
small, and difficult TUFLP (without single assign-
ment) instances constructed from the single-level
UFLP gap instances (Kochetov and Ivanenko 2005).
These instances exhibit large duality gaps (hence,
their name) and are considered difficult for branch-
and-bound methods based on LP relaxations.

The instances in the third set are similar, but larger.
They are obtained with gap instances generated with
the procedures described in Kochetov and Ivanenko
(2005). The instances in the second and third sets can
be formulated as both TUFLP-C and TUFLP-S, since
their transportation costs are sums of per-arc costs.

The instances in the fourth and final set are large-
size TUFLP-S instances obtained in a similar way as the
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instances in the third set, with the exception that the
conversion procedure was also modified to force the
explicit consideration of the single-assignment con-
straints. These large, difficult instances allow us to
show the improved scaling properties of the special-
ized branch-and-bound method (with respect to in-
stance size) compared to CPLEX.

5.1. Industrial Instances

Our interest in the TUFLP-S stems from its appearance
as a subproblem in a Lagrangian relaxation method
for an application in freight transportation. This sub-
section reports performance values for 400 TUFLP-S
instances derived from that industrial application, 100
on each of four networks: tiny, small, medium, and
full (Gendron and Semet 2009). Full instances include
93 depots, 320 satellites, and 701 customers. Medium
instances are about three-fourths as large at each level,
small ones are about one-half as large, and tiny ones
are about one-quarter as large.

5.1.1. Bounds at the Root Node. The industrial
instances exhibit a cost structure that cannot be ex-
pressed with formulation TUFLP-C. Thus, only for-
mulations and relaxations derived from TUFLP-S are
compared. From left to right, the columns in Table 1
report the average gaps (with respect to the optimal
value) and CPU times for “LP-S,” the LP relaxation
of the TUFLP-S formulation; “MIP’-S,” the relax-
ation derived by CPLEX at the root node, using the
TUFLP-S formulation; “Lag,” the Lagrangian relax-
ation with a single execution of the integer Lagrangian
subproblem following the solution of the LP relax-
ation; “Lag/BdL"” which improves the initial Lagrange
multipliers derived from the solution of the LP
relaxation with up to 300 iterations of the bundle
method; “MIP’-S/H,” the primal heuristic performed
by CPLEX at the root node, using the TUFLP-S formu-
lation (the reported CPU times are the same as those
for MIP’-S, since CPLEX reports the total time spent
at the root node without separating the times spent in

Table 1 Gaps and Run Times at the Root Node for Industrial Instances

Instances LP-S  MIP®-§ Lag Lag/Bdl  MIP®-S/H  Lag/H

Tiny
Gap (%) 0.01 0.00 0.00 0.00 0.00 0.01
Time (s) 0.04 0.08 0.09 0.17 0.08 0.14
Small
Gap (%) 0.43 0.41 0.36 0.25 0.33 0.26
Time (s) 0.60 2.93 1.85 17.23 2.93 2.92
Medium
Gap (%) 0.15 0.14 0.08 0.05 0.28 0.09
Time (s) 4.10 11.85 8.12 48.97 11.85 11.70
Full
Gap (%) 0.22 0.22 0.11 0.05 3.01 0.09
Time (s) 23.24 5190 3836 644.11 51.90 44.65
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computing lower and upper bounds); and “Lag/H,”
the primal Lagrangian heuristic (to ease the compar-
ison with the CPLEX root node heuristic, the CPU
times include those for Lag, in addition to the primal
heuristic times).

The gaps on these instances seem representative of
industrial location problems: across all instances, the
gap is lower than 1%, even for the LP relaxation. Solv-
ing the Lagrangian subproblem once, with Lagrange
multipliers extracted from the LP relaxation, suffices
to roughly halve the gap at the root node, and the
bundle method further reduces the gap, but signifi-
cantly increases the computational times. Note that,
for any of these instances, the lower bound computed
by CPLEX at the root node only slightly improves
upon the LP relaxation bound.

The Lagrangian heuristic performs well on these
instances, with solutions that are less than 0.3% away
from the optimum on average. For small, medium,
and full instances, the primal solutions derived by the
Lagrangian heuristic are better than those obtained
by CPLEX at the root node. In particular, on the full
instances (which correspond to the size encountered
in practice), our results show a final average gap of
0.09% in 44.65 seconds compared to the CPLEX 3.01%
gap obtained in 51.90 seconds.

In summary, for these industrial instances, the La-
grangian heuristic produces high-quality solutions
with sufficiently tight lower bounds, so branching can
be avoided. Furthermore, for small, medium, and full
instances, the two bounds are generally better and
computed faster than those found by CPLEX at the
root node.

5.1.2. Performance of Enumerative Methods. Re-
call that industrial instances cannot be solved as
TUFLP-C. Thus, three enumerative methods are com-
pared: “MIP-5” corresponds to the TUFLP-S formula-
tion solved by CPLEX, “Lag/Pol” to the specialized
branch-and-bound with only polytomic branching,
and “Lag/GUB” to the specialized branch-and-
bound combining the GUB and polytomic branching
schemes. Table 2 displays the CPU times and the aver-
age number of nodes for each enumerative method.

For medium and full instances, the specialized
branch-and-bound method with polytomic branch-
ing proves optimality in fewer nodes than CPLEX
on model MIP-S. In particular, on full instances, the
specialized branch-and-bound method explores sig-
nificantly fewer nodes (more than 14 times fewer on
average) than CPLEX on MIP-S. However, CPLEX
nevertheless executes three to five times faster on
average on full and medium instances. Small in-
stances seem more difficult than others for the spe-
cialized branch-and-bound method. In particular, the
specialized method with only polytomic branching,
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Table 2 Run Times and Node Counts for Enumerative Methods on
Industrial Instances

Instances MIP-S Lag/Pol Lag/GUB
Tiny
Time (s) 0.08 0.16 0.16
Nodes 1.03 0.49 0.56
Small
Time (s) 495 239.07 4,021.88
Nodes 56.89 77.53 582.39
Medium
Time (s) 23.97 115.13 1,176.68
Nodes 37.18 4.42 81.68
Full
Time (s) 21 1,036.06 1,606.06
Nodes 162.51 11.46 36.50

Lag/Pol, is significantly (close to 50 times) slower
than MIP-S on average.

5.2. Gap Instances

Landete and Marin (2009) describe a simple proce-
dure to construct TUFLP-C instances from small and
hard UFLP instances (Kochetov and Ivanenko 2005).
We used the same procedure, on the same input, to
obtain the same set of 90 instances with 50 depots,
50 satellites, and 50 customers. These instances have
transportation costs that are sums of per-arc costs.
Therefore, they can also be modeled as TUFLP-S. This
allows us to compare the bounds obtained with our
methods with those in Landete and Marin (2009). The
only difference is that we consider the UFLP instances
as sparse graphs, while Landete and Marin (2009)
directly sums “big-M” costs. This way, 16 instances
are made infeasible, leaving 28 instances derived from
Gap A, 16 from Gap B, and 30 from Gap C.

5.2.1. Bounds at the Root Node. Table 3 reports
the average gap (with respect to the optimal value)
and CPU times at the root node for various bounding
methods on Gap A, B, and C instances. These instances
are derived from hard UFLP instances and are
expected to exhibit huge integrality gaps on all prac-
tical formulations. In order, the columns are “Land,”

Table 3 Gaps and Run Times at the Root Node for Gap Instances

the formulation with specialized facet-defining con-
straints developed in Landete and Marin (2009) (result
tables in Landete and Marin (2009) do not report solu-
tion times at the root node); “LP-C,” the LP relaxation
of the TUFLP-C formulation; “MIP’-C,” the relax-
ation derived by CPLEX at the root node, using the
TUFLP-C formulation; “LP-S,” the LP relaxation of
the TUFLP-S formulation; “MIP?-S,” the relaxation
derived by CPLEX at the root node, using the TUFLP-5
formulation; “Lag,” the integer Lagrangian subprob-
lem solved only once, with Lagrange multipliers
extracted from TUFLP-S; “Lag/Bdl,” the Lagrangian
relaxation with up to 300 iterations of the bundle
method; “MIP’-C/H,” the primal heuristic performed
by CPLEX at the root node using the TUFLP-C formu-
lation; “MIP°-S/H,” the primal heuristic performed by
CPLEX at the root node using the TUFLP-S formula-
tion; and “Lag/H,” the primal Lagrangian heuristic.
For each instance, LP-S provides a better bound than
LP-C, and Lag/Bdl a better bound than LP-S. How-
ever, Lag almost always obtains the exact same bound
as LP-S: for gap instances, forcing the ¢, variables to
take integer values only improves the lower bound
when the Lagrange multipliers are optimized with a
bundle method. Overall, the valid inequalities intro-
duced in Landete and Marin (2009) improve LP-C and
yield bounds that are comparable with (and gener-
ally better than) those derived with LP-5; they too
are weaker than the bounds obtained with Lag/Bdl.
In general, the lower bounds computed by CPLEX
at the root node improve on their corresponding LP
relaxation bounds. It is interesting to note that even
though LP-5 provides better lower bounds than LP-C,
the lower bounds obtained by CPLEX at the root node
are sometimes better with MIP’-C than with MIP’-S
(this is true in particular for Gap B instances for which
MIPY-C generates better lower bounds on average).
The LP-S formulation takes more time to solve than
the more compact LP-C, by a factor of 2 to 3. Solv-
ing one Lagrangian subproblem adds reasonable over-
head, roughly doubling the run time compared to
LP-S, but rarely improves the bound value for gap
instances. Optimizing the Lagrange multipliers with
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Instances Land LP-C MIP®-C LP-S MIP-S Lag Lag/Bd| MIP?-G/H MIP?-S/H Lag/H
Gap A
Gap (%) 10.44 11.62 10.66 11.06 10.45 11.06 8.38 345 399 11.06
Time (s) 0.04 0.30 0.10 0.55 0.26 153.40 0.30 0.55 0.34
Gap B
Gap (%) 6.88 8.00 7.15 7.84 7.31 7.84 5.24 2.66 3.02 7.21
Time (s) 0.04 0.24 0.09 0.51 0.22 155.03 0.24 0.51 0.26
Gap C
Gap (%) 12.15 13.47 12.74 12.82 12.48 12.82 9.82 345 430 9.83
Time (s) 0.05 0.41 0.13 0.69 0.31 235.90 0.41 0.69 0.38
RIGHTS i,
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up to 300 iterations of the bundle method improves
the lower bound significantly, but requires too much
CPU time to be practical.

The “Lag/H” column shows the optimality gap
after performing the primal heuristic. The execution
of the primal heuristic took negligible time compared
to the Lagrangian subproblem, but the average gaps
are modest, between 7% and 12%, depending on
the instance sets. The primal solutions computed by
CPLEX at the root node are generally better, display-
ing average gaps between 2% and 4% for MIP*-C/H,
and between 3% and 5% for MIP’-S/H. It is notewor-
thy that the former performs generally better, even
though it is based on a weaker (but more compact) LP
relaxation.

5.2.2. Performance of Enumerative Methods. In
Table 4, the columns “Land,” “MIP-C,” and “MIP-5"
correspond, respectively, to the formulation with spec-
ialized valid inequalities in Landete and Marin (2009),
the TUFLP-C formulation, and the TUFLP-S formula-
tion, solved by CPLEX. The column “Lag/Pol” reports
run times and node counts when only polytomic
branching is used, while the column “Lag/GUB”
reports values for the specialized branch-and-bound
method combining the two branching schemes, GUB
and polytomic.

The difference in run times between our results and
those of Landete and Marin (2009) is so wide that
the averages are of limited usefulness. One reason for

Table 4 Run Times and Node Counts for Enumerative Methods on
Gap Instances

Instances Land MIP-C MIP-S Lag/Pol Lag/GUB

Gap A
Time (s) 97.03 1.63 5.82 13.88 6.89
Nodes 99.79 191.00 484.61 29.89 18.82
Gap B
Time (s) 69.83 1.12 356 8.44 4.71
Nodes 80.63 153.19 338.94 19.88 14.38
Gap C
Time (s) 171.8 393 17.92 43.01 14.72

Nodes 26017 476.27 1,325.83 79.87 36.20

Table 5 Gaps and Run Times at the Root Node for Gap Instances

the difference might be their use of “big-M” values,
instead of a sparse formulation that implicitly filters
forbidden paths. Improvements in CPU performance
and in CPLEX, from versions 9 to 12, are other possible
explanations for such a huge difference in CPU times.

Formulation TUFLP-C (without single-assignment
constraints) achieves the lowest run times. It seems
likely that a more sophisticated implementation of the
formulation with additional facet-defining inequalities
described in Landete and Marin (2009) would achieve
slightly lower run times: the formulation size is sim-
ilar, and the facet-defining inequalities help decrease
the number of nodes explored. TUFLP-S comprises
more variables and constraints than TUFLP-C for the
same instance, and this is reflected in increases in CPU
time and number of nodes.

The specialized branching schemes (Lag/Pol and
Lag/GUB) significantly reduce the node count com-
pared to all of the other formulations. This is even
more marked for Lag/GUB, which exploits the struc-
ture of GUB constraints to convert such constraints
to equalities before executing polytomic branching.
However, run times are longer than those for the
MIP-C formulation solved by CPLEX, while they
remain comparable to those for the MIP-S formulation
solved by CPLEX.

5.3. Large Gap Instances

Using the procedure described in Landete and Marin
(2009), we reimplemented the generators in Kochetov
and Ivanenko (2005) to produce 30 UFLP instances
each of the A, B, and C classes of size 150 x 150
and converted them to TUFLP-S instances of size
75 x 75 x 75 (“Large A,” “Large B,” and “Large C”).
Like gap instances, these instances have transportation
costs that are sums of per-arc costs. Therefore, they can
be modeled as TUFLP-C as well as TUFLP-S.

5.3.1. Bounds at the Root Node. Table 5 reports
the average gaps (with respect to the optimal values)
and the average CPU times for the three classes of
instances, and for the same methods as in Table 3,
except Land. These instances display significantly
larger gaps than the gap instances. In particular, LP-C

Instances LP-C MIP-C LP-S MIP"-§ Lag Lag/Bdl MIP?-C/H MIP?-S/H Lag/H
Gap A
Gap (%) 18.26 17.94 17.28 17.13 17.28 16.18 9.14 24.33 13.33
Time (s) 0.38 2.88 1.18 5.22 2.71 2,673.40 2.88 5.22 3.05
Gap B
Gap (%) 21.32 21.06 19.51 19.42 19.51 19.05 8.99 24.11 11.38
Time (s) 0.49 3.35 1.35 5.43 2.87 2,394.60 335 5.44 3.31
Gap C
Gap (%) 21.01 20.74 19.31 19.22 19.31 18.83 8.96 26.47 12.27
Time (s) 0.53 3.53 1.79 6.83 3.25 2,563.18 353 6.83 356

RIGHTS <
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and LP-S show average gaps between 17% and 22%,
depending on the instance sets. We observe that the
Lagrangian bound, Lag, never improves on the LP
relaxation LP-S for any of these instances. Perform-
ing the bundle method for 300 iterations improves on
these modest gaps, at the expense of excessive com-
putational times. In general, LP-S provides a better
bound than LP-C by about 1% to 2%, and Lag/Bdl
a better bound than LP-S by about 1%. The best
lower bounds are obtained by Lag/Bdl, which slightly
improves upon the lower bounds produced by CPLEX
at the root node, but the average gaps still range in the
16%—-20% interval.

The primal heuristic, Lag/H, finds solutions with
gaps that often exceed 10%, but identifies significantly
better solutions than CPLEX on formulation LP-S at
the root node, which computes primal solutions dis-
playing gaps around 25%. Performing the CPLEX root
node heuristic on formulation LP-C gives the best
upper bounds, but the average gaps are relatively
high, around 9%.

5.3.2. Performance of Enumerative Methods.
Table 6 reports average CPU times and node counts
for the TUFLP-C and the TUFLP-S formulations, MIP-
C and MIP-S, respectively, as well as for the spe-
cialized branch-and-bound method combining GUB
and polytomic branching schemes, Lag/GUB. The lat-
ter was shown above to be preferable to Lag/Pol
for instances in the gap family. Indeed, Lag/Pol, the
Lagrangian branch-and-bound with only polytomic
branching, failed to solve all but a few of these large
gap instances.

On average, across all instances, the Lagrangian-
based branch-and-bound method explores signifi-
cantly fewer nodes than CPLEX on MIP-S (about
50 times fewer, on average) and MIP-C (more than
six times fewer, on average). When compared with
CPLEX on MIP-S, the specialized branch-and-bound
method is three times faster, but three times slower
than CPLEX on model MIP-C. These results indicate
that on these instances, the lower bound improvement
from TUFLP-C to TUFLP-S does not compensate for
the increase in the number of variables.

Table 6 Run Times and Node Counts for Enumerative Methods on
Large Gap Instances

5.4. Large Gap Instances with Single-Assignment
Constraints

To obtain additional large instances that consider
the single-assignment constraints explicitly, we used
the same procedure as the one performed to gen-
erate large gap instances, with one difference: each
transportation cost was incremented by (7i + 3j + k)
mod 10, where i is the rank of the depot, j is the rank
of the satellite, and k is the rank of the customer. This
way, 90 instances of size 75 x 75 x 75 are generated, 30
in each of three classes, “Large A-S,” “Large B-S,” and
“Large C-S.”

5.4.1. Bounds at the Root Node. Table 7 reports
the average gaps (with respect to the optimal values)
and the average CPU times for the three classes of
instances for the same methods as in Table 1. These
instances appear as difficult as the large gap instances
of Section 5.3. In particular, LP-S shows average gaps
between 17% and 20%, and Lag never improves on
the LP relaxation gap for any of these instances.
Performing CPLEX at the root node only slightly
improves on these gaps, while Lag/Bdl provides the
best lower bounds (with average gaps between 16%
and 19%) at the expense of excessive computational
times. The Lagrangian-based primal heuristic, Lag/H,
identifies significantly better solutions than the root
node heuristic of CPLEX, but the gaps exceed 10% on
average.

54.2. Performance of Enumerative Methods.
Table 8 reports average CPU times and node counts

Table 7 Run Times and Gaps at the Root Node for Large Gap
Instances with Single Assignment

Instances LP-S MIP®-S  Lag Lag/Bdl  MIP*-S/H Lag/H

Large A-S
Gap (%) 1715 17.010 1715 16.27 22.24 9,52
Time (s) 1.19 5.35 279 2,581.82 5.35 322
Large B-S
Gap (%) 1936 19.26 19.36 18.92 23.73 13.20
Time (s) 1.38 5.51 292 2,479.71 5.51 3.25
Large G-S
Gap (%) 1914 19.03 19.14 18.76 25.75 12.46

Time (s)  1.81 6.80 3.16  2,566.94 6.80 3.39

Table 8 Run Times and Node Counts for Enumerative Methods on
Large Gap Instances with Single Assignment

Instances MIP-C MIP-3 Lag/GUB Instances MIP-S Lag/GUB
Large A Large A-S
Time (s) 343.51 3,288.34 1,189.90 Time (s) 3,622.68 1,293.26
Nodes 5,459.17 35,860.69 816.41 Nodes 38,163.90 798.14
Large B Large B-S
Time (s) 399.65 3,740.50 1,115.20 Time (s) 4,009.84 1,203.34
Nodes 4,651.60 38,768.73 653.87 Nodes 41,169.53 660.47
Large C Large G-S
Time (s) 448.32 4,492.01 1,500.79 Time (s) 4,892.40 1,593.91
Nodes 5,072.63 36,225.87 801.13 Nodes 38,857.73 760.80
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until completion when solving these large artificial
instances of the TUFLP-S. The TUFLP-C formulation
is not equivalent to TUFLP-S on these instances, so we
only consider MIP-5 solved by CPLEX and Lag/GUB.
On average, the Lagrangian-based branch-and-bound
method explores more than 50 times fewer nodes and
uses one-third as much time as CPLEX on MIP-S.

One might attribute the superior performance of
the specialized branch-and-bound algorithm on these
instances to better upper bounds than those obtained
by CPLEX, as shown by the results at the root node.
However, by analyzing the evolution of the upper
bounds when MIP-S is solved by CPLEX, we found
that CPLEX quickly reaches (typically within one
minute) the best upper bound computed by Lag/GUB.
Since Lag lower bounds are dominated by those
obtained by CPLEX at the root node, the explanation
for the superiority of Lag/GUB lies in its aggressive
search strategy, including the combination of GUB and
polytomic branching schemes, the adaptation of relia-
bility branching, and the best-first search strategy (the
last two features make use of the information derived
from the Lagrangian subproblem at each node). In par-
ticular, we compared the Lagrangian-based sorting of
unreliable candidates with an LP-based one (see Sec-
tion 4.2), and we measured a CPU time improvement
of 15% on average on the large gap instances. Note
that on industrial and gap instances, it was shown
above, in Sections 5.1.2 and 5.2.2, that such an aggres-
sive search strategy significantly reduces the number
of nodes, compared to what CPLEX achieves on MIP-
S. However, when CPLEX generates only a few hun-
dred nodes, as is the case for most industrial and
gap instances, this reduction in the number of nodes
does not translate into an improvement in the com-
putational time. For the difficult large gap instances,
with or without explicit single-assignment constraints,
CPLEX on formulation TUFLP-S generates more than
35,000 nodes, while Lag/GUB explores less than 1,000
nodes on average; this significant reduction now trans-
lates into a net gain in terms of the CPU time needed
to prove the optimality of the solutions.

6. Conclusion

We addressed the two-level uncapacitated facility
location problem with single-assignment constraints,
a problem that arises in industrial applications in
freight transportation (Gendron and Semet 2009) and
in telecommunications (Chardaire, Lutton, and Sutter
1999). The problem can also be used to model two-
level uncapacitated facility location problems without
single-assignment constraints, where transportation
costs are sums of per-arc costs and there are no assign-
ment costs between depots and satellites (TUFLP-C).
We showed that the LP relaxation of TUFLP-S is
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stronger than the LP relaxation of the usual MIP model
used in this case, at the expense of increasing the size
of the formulation.

We presented a Lagrangian relaxation approach
for which the Lagrangian subproblem reduces to a
single-level uncapacitated facility location problem.
The Lagrangian dual is solved with a fast two-step
heuristic; in the first step, the LP relaxation is solved,
while the second step solves a single Lagrangian sub-
problem with Lagrange multipliers initialized with the
LP-optimal dual solution.

We also developed a Lagrangian heuristic that in-
cludes an MIP-based LNS heuristic that solves a series
of small UFLPs. The dual and primal bounds thus
obtained were embedded within a specialized branch-
and-bound method that implements two branching
strategies: the GUB branching strategy and the poly-
tomic branching strategy. The latter can be used alone
or combined with the first strategy.

We presented and analyzed computational results
on four sets of instances. On instances derived from a
freight transportation application (Gendron and Semet
2009), the Lagrangian heuristic, without any branch-
ing, provides lower and upper bounds that are within
1% of optimality on average. On these instances, the
Lagrangian lower bound improves on the (already
strong) LP bound. The Lagrangian heuristic computes
better bounds (both lower and upper) than CPLEX at
the root node, and in less time. On these instances, the
specialized branch-and-bound method reduces signif-
icantly the number of nodes compared with CPLEX,
but its CPU times are nevertheless higher. On diffi-
cult artificial instances, the combined polytomic/GUB
branching strategy performs well: compared with
CPLEX on the TUFLP-S formulation, the number of
nodes is significantly reduced, and the CPU times
comparable, if not shorter. Since these instances can
be cast as TUFLP-C, our experiments showed that a
weaker, but smaller, formulation for the problem is
solved more efficiently by CPLEX than both CPLEX
on the TUFLP-5 model and our specialized branch-
and-bound method. Finally, on large, even more diffi-
cult, artificial instances that cannot be cast as TUFLP-C
instances, our specialized branch-and-bound method
outperforms CPLEX on the TUFLP-S model, both in
terms of the number of nodes and the CPU times.

The performance of the specialized branch-and-
bound method could be improved by adaptive param-
eter tuning and branching strategy choice, along with
further refinements. In particular, it is likely that a spe-
cialized UFLP solver would be beneficial, as nearly
half the run time of the specialized branch-and-bound
methods is used to solve such problems. Nevertheless,
our specialized branch-and-bound method exhibits
better scaling properties to large and difficult instances
than CPLEX on the TUFLP-5 model.
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